2️⃣在Python虚拟环境下使用 VS Code or PyCharm
Implementing PyTorch or PyCharm with VS code in virtual python environment
Check NVIDIA Driver and CUDA Version
cmd
nvidia-smi

VS Code
Install VS Code
Open VS Code
Install extention (Python, Jupyter)
Ctrl + Shift + P
Python: Select Interpreter (Select virtual python environment)
Select pytorch (Python 3.11.9)

PyCharm
Install PyCharm
Create a new project
Select Custom environment
Select existing
Select Conda Type
Select Environment

Check version and GPU (batch file)
## check_v.py
import torch
import sys
print("Python Version is",sys.version)
print("CUDA Version is", torch.version.cuda)
print("Pytorch Version is", torch.__version__)
print("Whether CUDA is supported by our system:", torch.cuda.is_available())
device_id = torch.cuda.current_device()
print("Current Device name:", torch.cuda.get_device_name(device_id))
cuda_id = "GPU available for cuda:"+str(device_id)
device = cuda_id if torch.cuda.is_available() else 'Only CPU can be used'
print(device)
## entryTorch.bat
call conda activate pytorch
python check_v.py
Install cuDNN
Download cuDNN Library
Select Windows -> x86_64 -> Tarball -> 12 (CUDA Version)
Download and Unzip
go to C:\Program Files\NVIDIA Corporation
Create new folder: CUDNN
Create a new folder, name it is v9.0 which in the folder CUDNN
copy unzip files into the v9.x folder
add path C:\Program Files\NVIDIA Corporation\CUDNN\v9.x\bin into Environment Variables
Last updated
Was this helpful?